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Recent theoretical work has provided evidence that hybrid functionals, which include a fraction of exact
�Hartree-Fock� exchange in the density functional theory exchange and correlation terms, significantly improve
the description of band gaps of semiconductors compared with local and semilocal approximations. Based on
a recently developed order-N method for calculating the exact exchange in extended insulating systems, we
have implemented an efficient scheme to determine the hybrid functional band gap. We use this scheme to
study the band gap and other electronic properties of the ternary compound In1−xGaxN using a 64-atom
supercell model.
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I. INTRODUCTION

The design of novel functional semiconductors with given
values of the energy band gap is an area of intense
research.1–6 In particular, much attention is focused on the
band-gap engineering of group-III nitride semiconductors,
whose remarkable optical properties are important for opto-
electronic device applications.7,8 To guide the search for
compounds with tailored properties,1 experimental studies
are often accompanied by electronic-structure calculations
based on density functional theory �DFT�.9 For these calcu-
lations, the local-density approximation �LDA� or general-
ized gradient approximation �GGA� are typically used. Due
to the delocalization error of the LDA and GGA exchange
and correlation functionals, however, these approaches se-
verely underestimate the materials band gaps.10,11

As shown by several recent studies,12 a significant im-
provement in the description of semiconductor and insulator
band gaps is generally obtained by using hybrid
functionals,13 in which some exact �Hartree-Fock� exchange
is mixed into the exchange and correlation functional. This
reduces the delocalization and derivative discontinuity errors
of �semi�local functionals.2,10–12 However, because of the
considerable computational cost of evaluating the nonlocal
exact exchange term, hybrid functionals have been mostly
applied to systems with small unit cells.14 For the modeling
of systems where a large supercell is needed, an additional
screened exchange approximation is usually made to relieve
the computational burden.2,12

Recently Wu–Selloni–Car15 �WSC� introduced an order-N
method to calculate the exact exchange in extended insulat-
ing systems. The WSC method is based on a localized Wan-
nier function representation of the occupied �valence� space,
so that the exchange interaction between two orbitals decays
rapidly with the distance between their centers. A truncation
can thus be introduced, which greatly reduces the computa-
tional cost. The effectiveness of the WSC method was dem-
onstrated by ground-state electronic minimizations for crys-
talline silicon in supercells with 64 and 216 atoms.

In this paper, we extend the WSC scheme to compute
hybrid functional band gaps. To this end, the system’s first

�few� empty conduction state�s� is �are� determined starting
from the ground state calculated via the WSC method. With
hybrid functionals, this requires the computation of the pair
exchange between the empty state and each valence orbital.
Even though the empty state is delocalized, the product be-
tween this state and a valence orbital is well localized, so that
the corresponding exchange interaction can be truncated as
in the original WSC method.15,16 We apply our scheme to
determine the band gap of In1−xGaxN, a ternary nitride semi-
conductor of great technological interest, and of its parent
compounds, InN and GaN, using the PBE0 hybrid
functional.17 Our results show that, compared to the semilo-
cal PBE functional, PBE0 gives a considerably improved
description of the band gap, as well as of the cation d-state
binding energy, which is also poorly described by the semilo-
cal functionals.

II. FORMALISM AND METHOD OF CALCULATION

The nonempirical PBE0 hybrid functional is constructed
by mixing 25% of exact exchange with the GGA-PBE
exchange17 while the correlation potential is still represented
by the corresponding functional in PBE,18

Exc
PBE0 =

1

4
Ex +

3

4
Ex

PBE + Ec
PBE. �1�

Here Ex denotes the exact exchange energy, Ex
PBE is the

PBE exchange, and Ec
PBE is the PBE correlation functional.

Ex has the usual Hartree-Fock form in terms of one-electron
orbitals. In the WSC method, this term is expressed in terms
of localized Wannier orbitals ��̃i�. These are obtained
through an unitary transformation of the delocalized Bloch
states ��i� corresponding to occupied bands. In particular, we
use maximally localized Wannier functions �MLWFs�,16

which are exponentially localized. In this way, a significant
truncation in both number and size of exchange pairs can be
achieved in real space.

We now turn to the calculation of the band gap. In ex-
tended insulating systems the band gap is simply given by
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the difference between the eigenvalue of the highest occu-
pied and the lowest empty state. Once the ground state has
been minimized self-consistently, the eigenvalue of the
empty state �e can be obtained through a simple nonself-
consistent calculation. With the hybrid PBE0 functional, the
equation for �e is

�−
1

2
�2 + Vion�r� + VH��val�r�� +

3

4
Vx

PBE��val�r��

+ Vc
PBE��val�r��� � �e�r� +

1

4
	 Vx

val�r,r���e�r��dr�

= �e�e�r� . �2�

In the above expression we have assumed, for simplicity, a
closed-shell system with N /2 doubly occupied one-electron
states �extension to spin-polarized systems is straightfor-
ward�; VH and Vion are the Hartree and the ionic �pseudo-
�potentials, respectively; Vx

PBE and Vc
PBE are the PBE ex-

change and correlation potentials. We note that VH, Vx
PBE, and

Vc
PBE are fixed operators as they only depend on the �fixed�

valence charge density �val�r�=
 j
occ� j

��r�� j�r�. Finally, the
nonlocal exact exchange potential Vx

val�r ,r�� is given by

Vx
val�r,r�� = − 2


j

occ
�̃ j

��r���̃ j�r�
�r − r��

, �3�

where the sum runs over all the occupied states. This poten-
tial describes the exchange interaction between the empty
state and each of the valence MLWFs ��̃ j�.

The action of Vx
val�r ,r�� on the empty state �e in Eq. �3� is

given by

Dx
e�r� = − 2


j

occ 	 dr�
�̃ j

��r���e�r��
�r − r��

� �̃ j�r�

= − 2

j

occ

vej�r��̃ j�r� . �4�

Here vej is the Coulomb potential originating from the “ex-
change charge” �ej = �̃ j

��r���e�r��, and satisfies the Poisson
equation

�2vej = − 4��ej . �5�

It is important to note that, while the empty eigenstate of Eq.
�2� is Bloch type and delocalized in real space, the exchange
pair density �ej is confined by the valence MLWFs that are
well localized in real space. As a result, the Poisson equation,
Eq. �5�, and the action of the exchange operator, Eq. �4�,
need only be solved in the region where �̃ j�0.

We have implemented the above computational procedure
for calculating the PBE0 band gap in the CP code of the
QUANTUM-ESPRESSO package.19 The procedure works as a
post processing feature following a PBE0 ground-state cal-
culation by the MLWF-based WSC method. In this work, we
use it to calculate the electronic structure, particularly the
band gap, of GaN, InN, and In1−xGaxN in the zinc-blende
phase. These systems are computationally challenging be-

cause InN and In-rich In1−xGaxN are incorrectly predicted to
be metallic by standard GGA calculations.

The calculations were performed using a 64-atom cubic
supercell to model both In1−xGaxN and its parent compounds,
GaN and InN. For each Ga concentration x in the ternary
In1−xGaxN compound, only a few selected atomic configura-
tions were considered, with no specific treatment of disorder
effects, as, e.g., in Refs. 4 and 8; within our limited sam-
pling, a very weak dependence of the calculated band gap on
the specific cation arrangement was observed. For direct
comparison with experiments and other theoretical results,
the experimental lattice constants of GaN �a=4.50 Å� and
InN �a=4.98 Å� were used, while the lattice parameter of
the alloy was determined by linear interpolation.

Table I shows the reference states and cutoff radii used to
construct the pseudopotentials used in this study. All pseudo-
potentials were generated using the OPIUM code.21 Unlike
with traditional density functional theory, Hartree-Fock
pseudopotentials require extra care in their construction. This
arises from the nonlocal form of the Hartree-Fock exchange
potential.22–25 The presence of the nonlocal exchange poten-
tial in Hartree-Fock or Hartree-Fock/DFT hybrids will often
yield pseudopotentials with an unphysical, long-range tail. A
correction procedure is necessary to remove this tail and re-
store the correct long-range behavior of the pseudopotential
while maintaining the eigenvalue spectrum and logarithmic
derivatives. Recent work22,26,27 has shown that this approach
yields highly accurate Hartree-Fock pseudopotentials.

The pseudopotentials were norm-conserving/Rappe–
Rabe–Kaxiras–Joannopoulos type20 and were generated from
self-consistent PBE0 all-electron reference states using the
approach of Ref. 27. The Ga and In pseudopotentials were
obtained from scalar-relativistic solutions while the N
pseudopotential was nonrelativistic. The local potential was
the s channel for all cases. The semicore d electrons were
treated as valence electrons in In and Ga �this corresponds to
576 valence electrons, i.e., 288 occupied states in the 64-
atom supercell�. The plane-wave energy cutoff was 70 Ry

TABLE I. Pseudopotential generation parameters. Here “ref.”
refers to the reference state occupation, rc refers to the cutoff radius,
qc is the cutoff wave vector, and NB is the number of Bessel func-
tions used for each channel �see Ref. 20�.

Atom Parameter s p d

N ref. 2.0 3.0

rc 1.30 1.30

qc 7.50 7.50

NB 10 10

Ga ref. 2.0 1.0 10.0

rc 1.80 2.20 1.80

qc 8.00 8.00 8.36

NB 6 8 10

In ref. 2.0 1.0 10.0

rc 1.90 2.30 1.80

qc 8.00 8.00 8.00

NB 8 8 8
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and the Brillouin zone was sampled at the � point. Atomic
positions in the supercell were relaxed at the GGA-PBE
level.

III. RESULTS AND DISCUSSION

The PBE0 ground state was determined by the WSC
method using MLWFs to calculate the exchange interaction
among valence electrons.15 While the MLWFs generated
from the PBE ground state often give an excellent initial
guess for the PBE0 calculations, for InN and In rich
GaxIn1−xN alloy configurations, the PBE ground state shows
an incorrect ordering of the energy bands. For this reason,
instead of PBE Wannier orbitals we used a set of fictitious
localized orbitals at the guess bonding centers as the trial
solutions for Eq. �2�. This procedure was essential to obtain
the PBE0 ground state with correct symmetry for InN and In
rich GaxIn1−xN. In the empty-state calculations, for each
PBE0 ground-state MLWF we first defined an orthorhombic
box such that outside this box �ej�r� is smaller than a given
cutoff value �cut; we take this cutoff equal to 2
�10−4 bohr−3 in the present work. Then Eq. �5� is solved by
the conjugate gradient method15 and for each pair �ej formed
by the empty state and a PBE0 ground state MLWF its action
Eq. �4� is applied only inside the above truncated box. Fi-
nally with this Dx

e�r�, Eq. �2� is solved via a damped second-
order Car-Parrinello dynamics.28

Representative MLWFs for InN in its PBE0 ground state
are shown in Fig. 1. Two types of valence MLWFs are
present in our calculations, d-type Wannier orbitals centered
at the In sites, and covalent sp3-type orbitals centered be-
tween the cations and the anions. As one can see from the
figure, the d-type orbitals originating from the cation semi-
core states are more localized than the sp3-type ones. The
valence MLWFs are qualitatively similar for GaN, except for
a slightly more pronounced localization related to the larger
band gap.

The band-structure properties of GaN and InN that result
from our PBE0-MLWFs calculations are summarized in
Table II. Here we report the valence-band width �VBW�, the
band gap Eg and the average d-band binding energy Ed, and
compare them to PBE calculations �performed with the same
64-atom supercell used for the PBE0 calculations� and ex-

perimental results. For further comparison, we also report the
results of PBE0 calculations performed using the reciprocal-
space implementation in Ref. 19; we can see that the agree-
ment between these results and our MLWF-based calcula-
tions is very good. From Table II it appears that the GGA-
PBE results significantly overestimate the energetic position
of the cation d bands. Because of the pd repulsion, the over-
estimated d bands level in turn pushes the p band upward,
resulting in an underestimated band gap. For InN, this effect
leads to a wrong ordering of the �1c and �15v energy levels,
and thus to the incorrect prediction of a metallic ground
state. In the PBE0 calculations, the inclusion of exact ex-
change reduces the delocalization error. As shown by Table
II, the PBE0 VBW is larger and the d-bands level shifts
downward, in better agreement with the experiment. In turn,
this leads to a considerable improvement of the band gaps of
both InN and GaN with respect to experiment; in particular,
the PBE0 band gap becomes 1.09 eV for InN. It is also worth
noticing that calculation of the PBE0 band gap using a PBE
pseudopotential yields a �0.2 eV smaller value than that
obtained with the PBE0 pseudopotential.

Besides confirming the good performance of hybrid func-
tionals for band-gap predictions, the above results for InN
and GaN provide evidence of the reliability of our procedure
for calculating the PBE0 band gap. We have thus applied this
procedure to the study of the ternary In1−xGaxN compound, a
system for which the standard reciprocal-space approach to
calculate the exact exchange would be extremely cumber-
some. Instead, our order-N scheme is well suited to treat
systems for which large supercells are needed. Using a 64-
atom supercell, we then considered In1−xGaxN models with
1�31�, 2�30�, 3�29�, 4�28�, 16�16�, 28�4�, 29�3�, 30�2�, and
31�1� Ga�In� cations, which correspond to x=0.031, 0.063,
0.094, 0.125, 0.5, 0.875, 0.906, 0.938, and 0.969. For each
value of x and a given configuration of Ga�In� atoms, the
atomic positions were relaxed at the PBE level. The com-
puted PBE0 band gap of In1−xGaxN as a function of the Ga
fraction x is shown in Fig. 2�a�, together with experimental31

and PBE results. We can see that PBE not only significantly
underestimates the band gap but incorrectly shows a metallic

FIG. 1. �Color online� Isosurfaces of typical d-type and sp3-type
Wannier orbitals in the InN �on the left� and GaN �on the right�
64-atom supercell. The Ga, In and N atoms are denoted by the
green, red, and blue spheres, respectively.

TABLE II. Valence-band width, band gap, and average d-band
binding energy �eV� of GaN and InN.

VBW Eg Ed

GaN PBE0-MLWFs 17.70 3.52 −16.16

PBE 16.14 1.60 −13.62

PBE0, plane wavesa 17.72 3.61

GWb 3.53 −16.5

Experimentc 3.3 −17.7

InN PBE0-MLWFs 17.04 1.09 −15.30

PBE results 15.04 −0.04 −13.48

GWb 0.78 −15.3

Experiment 0.61b −16.0 c

aReciprocal-space method in PWSCF �Ref. 19� in two-atom cell
and 4�4�4 k points.
bReference 29.
cReference 30.
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ground state for x�0.5. By contrast, a direct band gap at the
� point is found for all values of x at the PBE0 level. More-
over, PBE0 predicts a large band-gap bowing effect, in quali-
tative agreement with the experiment.31 The band gap can be
fitted to the quadratic form

Eg
alloy = xEg

GaN + �1 − x�Eg
InN − x�1 − x�b �6�

from which a bowing coefficient bPBE0=1.63 eV can be ex-
tracted, similar to the value, 1.67 eV, found in previous
screened-exchange density functional �sx-LDA�
calculations.4 However, this is somewhat larger than the ex-
perimental value bexpt=1.43 eV,31 likely because of the
overestimated PBE0 band gap for the In-rich compounds. To
gain more insight into the origin of the large band-gap bow-
ing, we have examined how the valence-band maximum
�VBM� and conduction-band minimum �CBM� depend sepa-
rately on x, see Fig. 2�b�. In this analysis, the average elec-
trostatic potential was taken as the reference for the band
alignment. It can be seen that the VBM increases almost
linearly with x, whereas the CBM shows a stronger nonlinear
increase which is responsible for the large bowing coefficient
of the alloy.

The electronic states in proximity of the VBM are impor-
tant for the pholuminescence properties of In1−xGaxN. These
states have the character of p orbitals localized at the N sites.

Previous theoretical studies of In1−xGaxN found that in Ga-
rich alloys the amplitude of these states is enhanced at N
sites close to In impurities,4,8 suggesting a localization of
photoexcited holes at such sites. This interesting result is
confirmed by our PBE0 hybrid calculations. The enhance-
ment, or hole localization, is particularly evident when the In
impurities are clustered to form a zigzag In-N-In-N-In chain,
as shown in Fig. 3�a�. This localization has been suggested to
be the reason of the high efficiency of In1−xGaxN-based emit-
ting devices.4,7 Interestingly, we found that there is an oppo-
site effect for the case of Ga impurities in In rich alloys.
Here, a reduction in the p states at the N sites along the
Ga-N-Ga-N-Ga-N chain is observed, see Fig. 3�b�.

IV. SUMMARY

In conclusion, we have described an efficient procedure to
calculate the band gap of extended insulating systems using
hybrid functionals. This procedure is based on the recently
developed WSC order-N method, in which the Hartree-Fock
exchange is calculated using MLWFs, and can therefore be
used to study the band gap and other electronic properties of
systems with large unit cells. We have demonstrated the ef-
fectiveness of our approach by a study of the band gap of a
ternary compound, In1−xGaxN, that we have modeled using a
64-atom supercell. Hybrid functional results for this impor-
tant material are here reported for the first time, without the
approximation of screened exchange, and show a much bet-
ter agreement with experiment than conventional DFT-GGA
or LDA calculations. Our approach can be widely used for
the band-gap engineering problem in semiconductor alloys.

ACKNOWLEDGMENTS

This work has been supported by the Department Of En-
ergy under Grants No. DE-FG02-06ER-46344, No. DE-
FG02-05ER46201, and No. AFOSR-MURI F49620-03-1-
0330. A. M. R. was supported by the �U.S.� Department of
Energy under Grant No. DE-FG02-07ER46431. X.W. would
like to thank Jennifer Chan and Alessandro Stroppa for use-
ful discussions.

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

4

5

6

(b)

VBM
CBM

P
B

E
0

ba
nd

ed
ge

(e
V

)

Ga fraction x in In1-xGaxN

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

(a)

P
B

E
0

ba
nd

ga
p

(e
V

)

Exper.

PBE

PBE0

FIG. 2. �Color online� �a� PBE0, PBE, and experimental band
gap of dependence Ga fraction x and �b� VBM and conduction-band
minimum as a function of Ga fraction x in In1−xGaxN.

FIG. 3. �Color online� Isosurfaces of PBE0 eigenstate �a�
In3Ga29N, where three In atoms forms a zigzag chain structure; �b�
Ga3In29N, where three Ga atoms forms a zigzag chain N atoms are
denoted by red, orange, and blue spheres, respectively.
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